SAFESKY: Developing an enterprise strategy for aviation radiation risk management

Space Weather Workshop 2017
May 5, 2017

W. Kent Tobiska
Space Environment Technologies

Background to aviation radiation activities – community goals and progress

Space weather creates a dynamic radiation environment at aviation altitudes

Aviation radiation exposure can come from

- global phenomenon GCRs (career health issue)
- √ high latitude phenomenon
 - Extended major events <u>SEPs</u> (fleet operations and aircrew/passenger safety issue)
 - Possible short-term minor events non GCR, non SEP (career health issue)?

Space Weather Division

Where are we today? Progress towards aviation radiation specification & forecast

DETECTORS

- ✓ Geiger counters
- ✓ Bubble detectors
- ✓ TEPC
- ✓ Liulin
- ✓ RaySure

1950-1990

Step 1: Discovery

DETECTORS

- ✓ Bubble
- ✓ TEPC
- ✓ Liulin
- ✓ RaySure
- ✓ ARMAS

MODELS

- ✓ CARI-6
- ✓ NAIRAS
- ✓ PANDOCA

1990-2016

Step 2: Validation

DETECTORS

- ✓ ARMAS
- **√** ???

MODELS

- ✓ NAIRAS
- ✓ PANDOCA
- ✓ CARI-7
- ✓ KREAM

2017-2019

Step 3: Monitoring (10 daily NAT or NoPAC flights)

DETECTORS

- ✓ ARMAS
- ✓ ???

MODELS

- ✓ NAIRAS
- ✓ PANDOCA

2020-

Step 4: Specification and forecast (100+ daily flights)

2017

SAFESKY ROADMAP

Roadmap for Aviation Radiation Safety

Backup slides

GCR, SEP, TP spectra and Rc produced for models that can be used for operational end users what improvements are needed?

GCRs produced for operational models

SEPs produced for operational models

TPs produced for operational models

Rc produced for operational models → Q?

Instruments – what instrument advances and campaigns will be needed?

Far West Hawk TEPC Dosimeter

- TEPC-Tissue Equivalent Proportional Counter (dose to humans) and the TEPC is a true Micro-dosimeter
- Gas filled active micro-dosimeter with 2 μm diameter spherical volume of human tissue equivalent plastic
- Measures absorbed dose (D) and dose equivalent (H) to tissue in mixed radiation fields
- Hawk is self contained, battery powered, passive and Spectrometer, includes power and data storage
- Provides a radiation quality factor (Q)
- Flew on AFRC/ER-2 in the 1990s
- Flown on United and Virgin Atlantic 747s
- Placed in aluminum suitcase in overhead storage
- Designed for aircraft, used on Space Shuttle, Mir & ISS

Hawk TEPC

Active volume

Liulin

- Absorbed dose in silicon measurements
- Developed in Bulgaria
- 3699 flights for 133,438
 H*(10) records with 5 min resolution covering one solar cycle from 2001 to 2011

Raysure

- Absorbed dose in silicon measurements
- Developed in UK
- Calibrations at LANSCE and flight on RaD-X

ARMAS

- Absorbed dose in silicon measurements
- Teledyne/Aero space Corporation technology
- real-time dose rates through Level 4 data produce (effective dose rate)

DOSEN

Space Weather Division

RaD-X campaign

Example of ARMAS for realtime total absorbed dose rate (Si) data acquisition

ARMAS Objective:

Build an accurate, calibrated, and real-time operational system to measure, report, and model aviation radiation for use by air crew, aircraft operators, air traffic management, and the flying public

NAIRAS plus ARMAS

Real-time global aviation radiation climatology

Real-time local aviation radiation measurements

ARMAS real-time measurements demonstrated

ARMAS Flight Module 1 (FM1) on NASA AFRC DC-8 292 NASA DC-8, NASA ER-2, NOAA G-IV, NSF G-V, and commercial Boeing/Airbus/Embraer flights from 2013 into 2017

Two ARMAS FM2 units were deployed in 2015

- Korea Space Weather Center purchased two FM2s as part of ARMAS Phase IIE commercialization
- FM2s were deployed to NOAA G4 and NSF G5 in Feb-Mar 2015
- Data became available to the community starting in June 2015

ARMAS global dose rates > 8 km total number of flights = 292 total number of flight data records = 210650 total number of flight data records less then 10 μ Gy/h = 43% number of flight data records less then 10 μ Gy/h = 43% percentage of flight data records less then

World View ARMAS FM4

Deployment

Stratospheric balloon flights starting in 2018 under MOU between World View and SET

 Data will be extended to ~40 km as a World View pathfinder payload

ARMAS FM6 on business jets in 2017

- FM6 has a micro dosimeter, GPS, micro SD data logger, Bluetooth and battery and/or AC power in a size similar to a smart phone
- All altitude ranges and all sources of radiation
- Personal dose exposure reported around the world providing situational awareness
- Provides management options for rad flight events
- FAA compliant (stand-alone unit with no attachment to plane)

FM7

NASA WHAATRR Glider ARMAS

Deployment

Data will be captured on balloon ascent to 30 km (100,000 ft.) and on glider descent to Edwards AFB

Small form-factor

36

2017 ARMAS activities

- ✓ Continued research flights with existing instruments: FM1, FM2A/B, FM3, FM5A/B: participate in global scientific campaigns
- ✓ Build and deploy FM4 and FM7: make stratospheric balloon flights on World View and NASA AFRC WHAATRR Glider vehicles
- ✓ Build and deploy FM6: produce commercial business jet instrument to extend number of instruments in fleet to >100
- ✓ Integrate USAF REACH data: dose measurements start with 3 Teledyne TID detectors in LEO on Iridium hosted payloads (Jan 2017)
- Complete NAIRAS-ARMAS data assimilation: take the step from global radiation climatology to global radiation weather
- 4 10 daily flight measurements will move community to STEP 3 (monitoring)
- 100 daily flight measurements will move community to STEP 4 (specification and forecast)